To normalize a histogram in Python, we can use hist() method. In normalized bar, the area underneath the plot should be 1.
Nội dung chính
- How do you create a normalized histogram in Python?
- How do you create a normalized histogram?
- How do I normalize a histogram in MatPlotLib?
- How do you fit a normal distribution to a histogram in Python?
Steps
-
Make a list of numbers.
-
Plot a histogram with density=True.
-
To display the figure, use show() method.
Example
import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True k = [5, 5, 5, 5] x, bins, p = plt.hist(k, density=True) plt.show()
Output

Updated on 08-May-2021 08:55:40
- Related Questions & Answers
- How to normalize a Database Table
- How to normalize a tensor in PyTorch?
- How to make a log histogram in Python?
- How to save a histogram plot in Python?
- How to have
logarithmic bins in a Python histogram? - HTML DOM normalize( ) Method
- How to plot a 2D histogram in Matplotlib?
- Circular (polar) histogram in Python
- How to plot a histogram using Matplotlib in Python with a list of data?
- How to specify different colors for different bars in a Python matplotlib histogram?
- Normalize numbers in an object – JavaScript
- Largest Rectangle in Histogram in Python
- How to create a histogram using weights in
R? - How to highlight a bar in base R histogram?
- How to center labels in a Matplotlib histogram plot?
We can normalize a histogram in Matplotlib using the density
keyword argument and setting it to True
. By normalizing a histogram, the sum of the bar area equals 1.
Consider the below histogram where we normalize the data:
nums1 = [1,1,2,3,3,3,3,3,4,5,6,6,6,7,8,8,9,10,12,12,12,12,14,18]
nums2= [10,12,13,13,14,14,15,15,15,16,17,18,20,22,23]
fig,ax = plt.subplots() # Instantiate figure and axes object
ax.hist(nums1, label="nums1", histtype="step", density=True) # Plot histogram of nums1
ax.hist(nums2, label="nums2", histtype="step", density=True) # Plot histogram of nums2
plt.legend()
plt.show()
Normalized histogram:
This is a follow-up question to this answer. I’m trying to plot normed histogram, but instead of getting 1 as maximum value on y axis, I’m getting different numbers.
For array k=(1,4,3,1)
import numpy as np
def plotGraph():
import matplotlib.pyplot as plt
k=(1,4,3,1)
plt.hist(k, normed=1)
from numpy import *
plt.xticks( arange(10) ) # 10 ticks on x axis
plt.show()
plotGraph()
I get this histogram, that doesn’t look like normed.
For a different array k=(3,3,3,3)
import numpy as np
def plotGraph():
import matplotlib.pyplot as plt
k=(3,3,3,3)
plt.hist(k, normed=1)
from numpy import *
plt.xticks( arange(10) ) # 10 ticks on x axis
plt.show()
plotGraph()
I get this histogram with max y-value is 10.
For different k I get different max value of y even though normed=1
or normed=True.
Why the normalization (if it works) changes based on the data and how can I make maximum value of y equals to 1?
UPDATE:
I am trying to implement Carsten König answer from plotting histograms whose bar heights sum to 1 in matplotlib and getting very weird result:
import numpy as np
def plotGraph():
import matplotlib.pyplot as plt
k=(1,4,3,1)
weights = np.ones_like(k)/len(k)
plt.hist(k, weights=weights)
from numpy import *
plt.xticks( arange(10) ) # 10 ticks on x axis
plt.show()
plotGraph()
Result:
What am I doing wrong?
How do you create a normalized histogram in Python?
To normalize a histogram in Python, we can use hist() method. In normalized bar, the area
underneath the plot should be 1..
Make a list of numbers..
Plot a histogram with density=True..
To display the figure, use show() method..
How do you create a normalized histogram?
Steps:.
Read the image..
Convert color image into grayscale..
Display histogram..
Observe maximum and minimum intensities from the histogram..
Change image type from uint8 to
double..
Apply a formula for histogram normalization..
Convert back into unit format..
Display image and modified histogram..
How do I normalize a histogram in MatPlotLib?
We can normalize a histogram in Matplotlib using the density keyword argument and setting it to True . By normalizing a histogram, the sum of the bar area equals 1. Hit / to insta-search docs and recipes!
How do you fit a normal distribution to a histogram in Python?
How to fit a distribution to a histogram in Python.
data = np. random. normal(0, 1, 1000) generate random normal dataset..
_, bins, _ = plt. hist(data, 20, density=1, alpha=0.5) create histogram from `data`.
mu, sigma = scipy. stats. norm. fit(data).
best_fit_line = scipy. stats. norm. … .
plt. plot(bins,
best_fit_line).
Thuộc website harveymomstudy.com