Đề thi toán đại học khối b năm 2010

Mua sắm hạnh phúc, Kinh doanh hiệu quả

Công ty Cổ phần Vật Giá Việt Nam. Số GCNDT: 0102015284, cấp ngày 21/06/2012 Nơi cấp: Sở kế hoạch và đầu tư thành phố Hà Nội Trụ sở chính: 102 Thái Thịnh, P. Trung Liệt, Hà Nội Đà Nẵng: Tầng 6, Số 53 Nguyễn Văn Linh, TP Đà Nẵng

Hồ Chí Minh: Đường Lữ Gia, Quận 11, Hồ Chí Minh

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012Môn: TOÁN; Khối BThời gian làm bài: 180 phút, không kể thời gian phát đềBỘ GIÁO DỤC VÀ ĐÀO TẠOĐỀ CHÍNH THỨCI. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu 1 (2,0 điểm). Cho hàm số y = x3 − 3mx 2 + 3m3 (1), m là tham số thực.a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.b) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 48.Câu 2 (1,0 điểm). Giải phương trình 2(cos x + 3 sin x) cos x = cos x − 3 sin x + 1.Câu 3 (1,0 điểm). Giải bất phương trình x + 1 + x 2 − 4 x + 1 ≥ 3 x .1Câu 4 (1,0 điểm). Tính tích phân I = ∫0x3x 4 + 3×2 + 2dx.Câu 5 (1,0 điểm). Cho hình chóp tam giác đều S.ABC với SA = 2a, AB = a. Gọi H là hình chiếuvuông góc của A trên cạnh SC. Chứng minh SC vuông góc với mặt phẳng (ABH). Tính thể tích củakhối chóp S.ABH theo a.Câu 6 (1,0 điểm). Cho các số thực x, y, z thỏa mãn các điều kiện x + y + z = 0 và x 2 + y 2 + z 2 = 1.Tìm giá trị lớn nhất của biểu thức P = x5 + y5 + z 5 .II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần riêng (phần A hoặc phần B)A. Theo chương trình ChuẩnCâu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho các đường tròn (C1 ): x 2 + y 2 = 4,(C2 ): x 2 + y 2 − 12 x + 18 = 0 và đường thẳng d : x − y − 4 = 0. Viết phương trình đường tròn có tâmthuộc (C2 ), tiếp xúc với d và cắt (C1 ) tại hai điểm phân biệt A và B sao cho AB vuông góc với d.x −1 yzvà hai= =21 −2điểm A(2;1; 0), B (−2;3; 2). Viết phương trình mặt cầu đi qua A, B và có tâm thuộc đường thẳng d.Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :Câu 9.a (1,0 điểm). Trong một lớp học gồm có 15 học sinh nam và 10 học sinh nữ. Giáo viên gọingẫu nhiên 4 học sinh lên bảng giải bài tập. Tính xác suất để 4 học sinh được gọi có cả nam và nữ.B. Theo chương trình Nâng caoCâu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có AC = 2 BD vàđường tròn tiếp xúc với các cạnh của hình thoi có phương trình x 2 + y 2 = 4. Viết phương trình chínhtắc của elip (E) đi qua các đỉnh A, B, C, D của hình thoi. Biết A thuộc Ox.Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho A(0; 0;3), M (1; 2; 0). Viết phương trìnhmặt phẳng (P) qua A và cắt các trục Ox, Oy lần lượt tại B, C sao cho tam giác ABC có trọng tâmthuộc đường thẳng AM.Câu 9.b (1,0 điểm). Gọi z1 và z2 là hai nghiệm phức của phương trình z 2 − 2 3 i z − 4 = 0. Viết dạnglượng giác của z1 và z2.———- HẾT ———Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.Họ và tên thí sinh: …………………………………………………………. ; Số báo danh:……………………………………… .BỘ GIÁO DỤC VÀ ĐÀO TẠO⎯⎯⎯⎯⎯⎯⎯⎯ĐỀ CHÍNH THỨCĐÁP ÁN – THANG ĐIỂMĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012Môn: TOÁN; Khối B(Đáp án – thang điểm gồm 04 trang)CâuĐáp ánĐiểm1a) (1,0 điểm)(2,0 điểm)Khi m = 1, ta có: y = x3 − 3x 2 + 3 .• Tập xác định: D = \.• Sự biến thiên:0,25− Chiều biến thiên: y ‘ = 3 x 2 − 6 x; y ‘ = 0 ⇔ x = 0 hoặc x = 2.Các khoảng đồng biến: (− ∞; 0) và (2; + ∞) , khoảng nghịch biến: (0; 2).− Cực trị: Hàm số đạt cực đại tại x = 0, yCĐ = 3; đạt cực tiểu tại x = 2, yCT = −1.− Giới hạn: lim y = −∞ và lim y = + ∞.x→−∞− Bảng biến thiên:0,25x→+ ∞x −∞y’0+0+∞2–0++∞30,25y−∞• Đồ thị:–1y30,252Ox−1b) (1,0 điểm)y ‘ = 3 x 2 − 6mx; y ‘ = 0 ⇔ x = 0 hoặc x = 2m.Đồ thị hàm số có 2 điểm cực trị khi và chỉ khi m ≠ 0 (*).Các điểm cực trị của đồ thị là A(0; 3m3 ) và B (2m; − m3 ).Suy ra OA = 3 | m3 | và d ( B, (OA)) = 2 | m | .0,250,25S ∆OAB = 48 ⇔ 3m4 = 480,25⇔ m = ± 2, thỏa mãn (*).0,25Trang 1/42Phương trình đã cho tương đương với: cos 2 x + 3 sin 2 x = cos x − 3 sin x(1,0 điểm)ππ⇔ cos 2 x − = cos x +33) ( )0,25( )0,25(ππ⇔ 2 x − = ± x + + k 2π (k ∈]).33⇔ x=0,252π2π+ k 2π hoặc x = k(k ∈]).330,253Điều kiện: 0 ≤ x ≤ 2 − 3 hoặc x ≥ 2 + 3 (*).(1,0 điểm)Nhận xét: x = 0 là nghiệm của bất phương trình đã cho.Với x > 0, bất phương trình đã cho tương đương với:x+1+ x + − 4 ≥ 3 (1).xxx+1Đặt t = x +(2), bất phương trình (1) trở thànhx5⇔ t ≥ . Thay vào (2) ta được21⎡3 − t < 0t − 6 ≥ 3 − t ⇔ ⎢⎢⎧3 − t ≥ 0⎢⎣⎩⎨t 2 − 6 ≥ (3 − t ) 2215≥ ⇔ x ≥ 2 hoặcx 2x≤120,250,250,251hoặc x ≥ 4. Kết hợp (*) và nghiệm x = 0, ta được tập nghiệm của bất phương41trình đã cho là: ⎡⎢0; ⎤⎥ ∪ [4; +∞).⎣ 4⎦⇔0< x≤4(1,0 điểm)Đặt t = x 2 , suy ra dt = 2 xdx. Với x = 0 thì t = 0; với x =1 thì t =1.1Khi đó I ==1∫∫(10∫) (0,25)211dt = ln|t + 2| − ln|t +1|−2t + 2 t +1= ln3 −5(1,0 điểm)0,251x 2 .2 xdx1td t=2 ( x 2 +1)( x 2 + 2) 2 (t +1)(t + 2)001210,2503ln2.20,25Gọi D là trung điểm của cạnh AB và O là tâm của ∆ABC. Ta cóAB ⊥ CD và AB ⊥ SO nên AB ⊥ ( SCD ), do đó AB ⊥ SC .SMặt khác SC ⊥ AH , suy ra SC ⊥ ( ABH ).Ta có: CD =HCAD0,25a 3a 3a 33nên SO = SC 2 −OC 2 =, OC =.233SO.CD a 11111a 2Do đó DH ==. Suy ra S ∆ABH = AB.DH =.SC428Ta có SH = SC − HC = SC − CD 2 − DH 2 =OBDo đó VS . ABH17 11a 3= SH .S ∆ABH =.396Trang 2/47a.40,250,250,250,256Với x + y + z = 0 và x 2 + y 2 + z 2 = 1, ta có:(1,0 điểm)10 = ( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 x( y + z ) + 2 yz =1− 2 x 2 + 2 yz , nên yz = x 2 − .22y 2 + z 2 1 − x2−11x66Mặt khác yz ≤=(*)., suy ra: x 2 − ≤, do đó −≤ x≤2222330,25Khi đó: P = x5 + ( y 2 + z 2 )( y 3 + z 3 ) − y 2 z 2 ( y + z )()12×2511 2x = (2 x3 − x).= x5 + (1− x 2 )⎡− x(1− x 2 ) + x x 2 − ⎤ + x 2 −⎣⎢42 ⎦⎥2⎡ 666⎤2Xét hàm f ( x) = 2 x3 − x trên ⎢ −.;⎥ , suy ra f ‘( x) = 6 x − 1; f ‘( x) = 0 ⇔ x = ±63 ⎦⎥⎢⎣ 3⎛ 6⎞ ⎛ 6⎞6 ⎛ 6⎞ ⎛ 6⎞ 66, f ⎜ ⎟ = f ⎜−Ta có f ⎜ −.⎟= f ⎜ ⎟=−⎟ = . Do đó f ( x) ≤99⎝ 3 ⎠ ⎝ 6 ⎠⎝ 3 ⎠ ⎝ 6 ⎠ 9= x5 + (1− x 2 ) ⎡⎣( y 2 + z 2 )( y + z ) − yz ( y + z )⎤⎦ + x 2 −0,25( ) ( )Suy ra P ≤Khi x =5 6.36665 6thì dấu bằng xảy ra. Vậy giá trị lớn nhất của P là, y = z =−.36367.a(1,0 điểm)(C)A0,25dI(C1) có tâm là gốc tọa độ O. Gọi I là tâm của đường tròn (C)cần viết phương trình, ta có AB ⊥ OI . Mà AB ⊥ d vàO ∉ d nên OI//d, do đó OI có phương trình y = x.0,250,25Mặt khác I ∈ (C2 ), nên tọa độ của I thỏa mãn hệ:⎧⎪ y = x⎧x = 3⇔⎨⇒ I (3;3).⎨ 2 2⎪⎩x + y −12 x +18 = 0 ⎩ y = 30,25Do (C) tiếp xúc với d nên (C) có bán kính R = d ( I , d ) = 2 2.0,25Vậy phương trình của (C) là ( x − 3) 2 + ( y − 3) 2 = 8.0,25B(C1)(C2)8.a(1,0 điểm)Gọi (S) là mặt cầu cần viết phương trình và I là tâm của (S).Do I ∈ d nên tọa độ của điểm I có dạng I (1+ 2t ; t ; − 2t ).0,25Do A, B∈( S ) nên AI = BI , suy ra (2t −1) 2 + (t −1) 2 + 4t 2 = (2t + 3) 2 + (t −3) 2 + (2t + 2) 2 ⇒ t =−1.0,25Do đó I (−1; − 1; 2) và bán kính mặt cầu là IA = 17.0,25Vậy, phương trình mặt cầu (S) cần tìm là ( x + 1) 2 + ( y + 1) 2 + ( z − 2) 2 = 17.0,259.a4(1,0 điểm) Số cách chọn 4 học sinh trong lớp là C25 =12650.0,2511Số cách chọn 4 học sinh có cả nam và nữ là C15.C103 + C152 .C102 + C153 .C100,25= 11075.0,25Xác suất cần tính là P =11075 443=.12650 506Trang 3/40,257.b(1,0 điểm)yBHACODx2+y2=1( a > b > 0). Hình thoi ABCD cóa 2 b2AC = 2 BD và A, B, C, D thuộc (E) suy ra OA = 2OB.Giả sử ( E ):0,25Không mất tính tổng quát, ta có thể xem A(a;0) vàx B 0; a . Gọi H là hình chiếu vuông góc của O trên AB,2suy ra OH là bán kính của đường tròn (C ) : x 2 + y 2 = 4.0,25111114==+=+.22224 OHOAOBaa20,25( )Ta có:x2 y 2+= 1.Suy ra a 2 = 20, do đó b2 = 5. Vậy phương trình chính tắc của (E) là20 58.bDo B ∈ Ox, C ∈ Oy nên tọa độ của B và C có dạng: B(b; 0; 0) và C (0; c; 0).(1,0 điểm)b cGọi G là trọng tâm của tam giác ABC, suy ra: G ; ; 1 .3 3JJJJGx y z−3.Ta có AM = (1;2; −3) nên đường thẳng AM có phương trình = =1 2 −3b c −2Do G thuộc đường thẳng AM nên = = . Suy ra b = 2 và c = 4.3 6 −3(Do đó phương trình của mặt phẳng (P) là)x y z+ + = 1, nghĩa là ( P) : 6 x + 3 y + 4 z − 12 = 0.2 4 39.bPhương trình bậc hai z 2 − 2 3 i z − 4 = 0 có biệt thức ∆ = 4.(1,0 điểm)Suy ra phương trình có hai nghiệm: z1 = 1 + 3 i và z2 = −1 + 3i.0,250,250,250,250,250,250,25ππ• Dạng lượng giác của z1 là z1 = 2⎛⎜cos + isin ⎞⎟.3⎠⎝ 30,252π2π• Dạng lượng giác của z2 là z2 = 2⎛⎜cos + isin ⎞⎟.33⎠⎝0,25———- HẾT ———-Trang 4/4

Xem thêm:  Dàn ý học tập la cuốn vở không có trang cuối

Câu 8: Trong không gian tọa độ Oxyz, cho các điểm A(1 ; 0 ; 0), B(0 ; b ; 0), C(0 ; 0 ; c), trong đó b , c dương và mặt phẳng (P): y – z + 1 = 0. Xác định b và c, biết mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ điểm O đến mặt phẳng (ABC) bằng 

Đề thi toán đại học khối b năm 2010


  • Đề thi THPT môn Toán chính thức
Đề thi toán đại học khối b năm 2010

Đề thi đại học môn TOÁN khối B năm 2010

Đề thi toán đại học khối b năm 2010

Đề thi đại học 2010

Trung tâm luyện thi đại học Đa Minh giới thiệu tới các em Đề thi đại học môn Toán khối B năm 2010. Đề thi và đáp án được trình bày rõ ràng và chi tiết trên Website hoặc các bạn có thể tải về máy. Chúc các em ôn thi đại học khối B đạt hiệu quả cao.

Đề thi toán đại học khối b năm 2010

Bấm vào đây để tải đề thi và đáp án môn Toán khối B

Trung tâm luyện thi đại học Đa Minh xin chúc các em ôn thi đại học khối B đạt hiệu quả cao.

Đề thi toán đại học khối b năm 2010
Đề thi toán đại học khối b năm 2010

Thuộc website harveymomstudy.com

Related Posts